Abstract
AbstractAtmospheric volatile organic compound (VOC) oxidation mechanisms under pristine (rural/remote) and urban (anthropogenically‐influenced) conditions follow distinct pathways due to large differences in nitrogen oxide (NOx) concentrations. These two pathways lead to products that have different chemical and physical properties and reactivity. Under pristine conditions, isoprene hydroxy hydroperoxides (ISOPOOHs) are the dominant first‐generation isoprene oxidation products. Utilizing authentic ISOPOOH standards, we demonstrate that two of the most commonly used methods of measuring VOC oxidation products (i.e., gas chromatography and proton transfer reaction mass spectrometry) observe these hydroperoxides as their equivalent high‐NO isoprene oxidation products – methyl vinyl ketone (MVK) and methacrolein (MACR). This interference has led to an observational bias affecting our understanding of global atmospheric processes. Considering these artifacts will help close the gap on discrepancies regarding the identity and fate of reactive organic carbon, revise our understanding of surface‐atmosphere exchange of reactive carbon and SOA formation, and improve our understanding of atmospheric oxidative capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.