Abstract
<p>Volatile organic compounds (VOC) play an important role in determining atmospheric processes that control air quality and climate. Although atmospheric VOC concentrations are mostly affected by plants, soils are significant contributors as they are simultaneously a source, a sink and a storage of atmospheric VOCs. The aim of the present study was to assess the effects of a prolonged drought condition on VOC soil fluxes in the tropical rainforest mesocosm of Biosphere 2 (B2; Tucson, Arizona, USA). The absence of atmospheric chemistry due to UV light filtering by the glass and the possibility to control and manipulate the conditions of the ecosystem make the B2 an ideal set-up to study the rainforest VOC dynamics.</p><p>The experiments were conducted over the 4 months B2WALD campaign during which the rainforest was subjected to a controlled drought period of about 10 weeks followed by a rewetting period. Soil VOCs fluxes were measured continuously by means of a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) that was connected to 12 automated soil chambers (LI 8100-104 Long-Term Chambers, Licor Inc.) placed in 4 different locations within the B2 rainforest.</p><p>The B2 rainforest soil acted as a strong sink for all isoprenoid species. The isoprene sink steadily weakened during drought period, but increased sharply back to the pre-drought levels after the rain rewet. In contrast, the monoterpene soil sink became slightly stronger during the mild drought period (up to 5 weeks after the last rainfall) but weakened during the severe drought period (up to 10 weeks after rainfall). A huge increase in monoterpene uptake was observed after the rain rewet. The oxidation products of isoprene (methacrolein, methyl vinyl ketone and isoprene peroxides) showed a similar trend to the monoterpenes, even in absence of atmospheric chemistry. The species with molecular formula C5H8O was taken up by the soil during predrought, which was reduced during mild drought period but increased again during the severe drought period.Sulfur-containing compounds including DMS and methanethiol all showed a significant emission peak immediately after the rain rewet.Oxygenated VOCs such as methanol and acetone were taken up by the soil in wet conditions. The uptake of both compounds strongly decreased with the drought and in severe drought conditions they were even emitted by the soil.</p><p>In summary, soil VOC fluxes changed markedly with the onset and development drought stages (pre, mild and severe drought) of the B2 rainforest, mirroring atmospheric VOC concentrations and soil microbial activity changes related to overall ecosystem response to drought and recovery.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.