Abstract
Proton-transfer-reaction mass spectrometry (PTR-MS) has emerged as a useful tool to study volatile organic compounds (VOCs) in the atmosphere. In PTR-MS, proton-transfer reactions with H30+ ions are used to ionize and measure VOCs in air with a high sensitivity and fast time response. Only the masses of the ionized VOCs and their fragments, if any, are determined, and these product ions are not unique indicators of VOC identities. Here, a combination of gas chromatography and PTR-MS (GC-PTR-MS) is used to validate the measurements by PTR-MS of a number of common atmospheric VOCs. We have analyzed 75 VOCs contained in standard mixtures by GC-PTR-MS, which allowed detected masses to be unambiguously related to a specific compound. The calibration factors for PTR-MS and GC-PTR-MS were compared and showed that the loss of VOCs in the sample acquisition and GC system is small. GC-PTR-MS analyses of 56 air samples from an urban site were used to address the specificity of PTR-MS in complex air masses. It is demonstrated that the ions associated with methanol, acetonitrile, acetaldehyde, acetone, benzene, toluene, and higher aromatic VOCs are free from significant interference. A quantitative intercomparison between PTR-MS and GC-PTR-MS measurements of the aforementioned VOCs was performed and shows that they are accurately measured by PTR-MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.