Abstract

Biomass-based solid residuals can be of serious hazardous environmental impacts if left for natural degradation. Thus, the proper utilization of such residuals is highly recommended. Therefore, one of solid residuals: namely, corn shell, was used in this study to synthesize carbon species (labeled as CS-C) as an adsorbent for efficient removal of heavy metal ions from aqueous solution. The structural properties and the textural characteristics of the prepared carbon species were verified. The present charges on the carbon surface were acquired via zeta potential analysis. The performance of CS-C, as adsorbent, was investigated through batch technique. Adsorption isotherm was optimally described using the Langmuir model reflecting that the removal process occurs at the homogenous surface of CS-C through a chemical reaction (surface complexation mechanism). The equilibrium state for the sorption process was reached after 4 h of interaction. The kinetic studies revealed the nice fit of heavy metal removal process to Pseudo-second-order model and the thermodynamics is matched to endothermic, spontaneous, and feasible sorption process. The displayed results could emphasize the high potentiality of CS-C to act as a remarkable sorbent for efficient tackling of water contaminants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.