Abstract

We have found experimentally and theoretically that laminated composites comprising one layer of length-magnetized Tb0.3Dy0.7Fe1.92 (Terfenol-D) magnetostrictive alloy sandwiched between two layers of thickness-polarized, electro-parallel-connected 0.7Pb(Mg1∕3Nb2∕3)O3–0.3PbTiO3 (PMN–PT) piezoelectric single crystal have a large converse magnetoelectric effect characterized by a large magnetic induction in response to an applied ac voltage. The reported converse magnetoelectric effect originates from the product of the converse piezoelectric effect in the PMN–PT layers and the converse magnetostrictive effect in the Terfenol-D layer. Large converse magnetoelectric coefficient in excess of 105mG∕V is obtained in the composites at a low magnetic bias field of 170Oe. The measured magnetic induction has an excellent linear relationship to the applied ac voltage with amplitude varying from 50to160V. These made the composites to be a promising material for direct realization of core-free magnetic flux control devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.