Abstract

This study focuses on the development of high-performance insulation materials to address the critical issue of reducing building energy consumption. Magnesium-aluminum layered double hydroxides (LDHs), known for their distinctive layered structure featuring positively charged brucite-like layers and an interlayer space, have been identified as promising candidates for insulation applications. Building upon previous research, which demonstrated the enhanced thermal insulation properties of methyl trimethoxysilane (MTS) functionalized LDHs synthesized through a one-step in situ hydrothermal method, this work delves into the systematic exploration of particle size regulation and its consequential effects on the thermal insulation performance of coatings. Our findings indicate a direct correlation between the dosage of MTS and the particle size of LDHs, with an optimal dosage of 4 wt% MTS yielding LDHs that exhibit a tightly interconnected hydrotalcite lamellar structure. This specific modification resulted in the most significant improvement in thermal insulation, achieving a temperature difference of approximately 25.5 °C. Furthermore, to gain a deeper understanding of the thermal insulation mechanism of MTS-modified LDHs, we conducted a thorough characterization of their UV-visible diffuse reflectance and thermal conductivity. This research contributes to the advancement of LDH-based materials for use in thermal insulation applications, offering a sustainable solution to energy conservation in the built environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call