Abstract
Based on two-dimensional particle-in-cell simulations, we investigated the electron beam’s transverse oscillations by temporally asymmetric laser pulses in laser wakefield acceleration. Of particular interest in this article are the effects of ultrashort laser pulses having sharp rising and slow falling time scales. In this situation, the accelerated electron beam interacts directly with the laser field and undergoes transverse oscillations due to a phase-slip with the laser field. This oscillation can be matched with the betatron oscillation due to the focusing force of the ions, which can lead to a large transverse oscillation amplitude due to the resonance between them. Furthermore, in this case, the electron beam can be microbunched at the laser wavelength, which may provide the possibility for generation of a coherent synchrotron radiation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have