Abstract

Employing temporally asymmetric laser pulses in the interaction with plasma has been recently proposed for controlling the pointing angle of an electron beam produced by a laser wakefield acceleration at low plasma density and moderate laser intensity. In this paper, results on the electron beam parameters for both symmetric and asymmetric laser pulses are presented. These results show that the highest-quality (well-pointed, well-collimated and bright) electron beams are generated in the current regime only using asymmetric laser pulses, which are longer than the plasma wave’s acceleration period, τ>λp/2c. The interaction between the laser pulse and the accelerated electron beam in the first plasma-wave period is extracted from the experimental results and observed in preliminary two-dimensional particle-in-cell simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call