Abstract
Short optical pulses in nonlinear fibers are susceptible to a variety of higher-order physical effects, including the Raman self-frequency shift and cubic and nonlinear dispersions. These effects directly modify pulse propagation and contribute to noise-induced phenomena such as the Gordon–Haus jitter. We show that phase-sensitive amplification, if used to compensate for loss, acts as a restoring force in frequency and compensates for the Raman self-frequency shift. Furthermore, phase-sensitive amplification controls the Gordon–Haus jitter, including the contributions of the Raman self-frequency shift and the third-order dispersion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have