Abstract
We report on the growth of quantum dot (QD) layers of InAsP alloys buried in GaAs by low-pressure metalorganic chemical vapor deposition. Ternary QDs were obtained by the addition of a PH3 flux during the InAs QD growth, exhibiting recombination energies lying between those of InAs and InP QDs. The electronic properties of these QDs, as evaluated by photoluminescence spectroscopy, could be tailored by varying both the growth rate and the PH3 flux for a constant AsH3 flux. The morphology of these QDs was investigated by transmission electron microscopy from which the formation of an InAsP ternary alloy QDs was inferred. Based on electron microscopy results, the fundamental role of As incorporation on the morphology of and on the defect nucleation associated to InAsP QDs could be then evaluated. From this optical–structural combined analysis, we were able to identify the growth conditions that produce good quality InAsP QDs embedded in GaAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.