Abstract
Maneuverability, hover, and simple mechanical design are the advantages of quadcopters. However, because quadcopters are smaller and lighter, they are more susceptible to wind than manned aircraft. The winds that cause air accidents are divided into several categories, namely downburst, turbulent wind, wind shear, and wind vortices. Disturbances and uncertainties, such as wind gusts, can result in difficulties in executing a mission on an accurate flight path. Quadcopter resilience is an important topic for UAV. Especially if the quadcopter is in terrain that is difficult for humans to reach. Hence, the system is susceptible and experiences reduced stability. Controlling a quadcopter with a cube-shaped static load to withstand turbulent wind gusts in this research uses robust Fuzzy Inference System control and trajectory control using LQR with Command-Generator Tracking. The results achieved through fuzzy control can fortify the quadcopter against half of the overall turbulent wind gusts with an RMSE of 0.0546. In contrast with the LQR-CGT control, which still exhibits an RMSE of 0.0795.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JAREE (Journal on Advanced Research in Electrical Engineering)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.