Abstract

Electron emission microscopy is used to visualize plasmonic routing in gold nano-structures. We show that in single-crystalline gold structures reliable routing can be achieved with polarization switching. The routing is due to the polarization dependence of the photon-to-plasmon coupling, which controls the mode distribution in the plasmonic gold film. We use specifically designed, single-crystalline planar structures. In these structures, the plasmon propagation length is sufficiently large such that significant plasmon power can be delivered to the near-field region around the end tips of the router. Solid state devices based on internal electron excitation and emission processes appear feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call