Abstract
Whispering gallery mode resonators have been demonstrated to be a great way to achieve superior optical cavities with high quality factor and small mode volume. However, due to the high sensitivity of these modes to the properties of the resonator boundary, they are susceptible to parasitic splitting of clockwise and counterclockwise modes. In this work, we investigate the effect of implantation of an engineered notch into the boundary of a circular microdisk resonator fabricated from colloidal quantum dots, which are particularly sensitive to boundary defects. We observed a strong reduction of parasitic mode splitting with introduction of a large engineered notch, as well as enhanced directionality of laser emission. We further investigate the performance of these resonators in evanescently coupled pairs, where the modal interaction allows modulation of laser behavior through variation of the gain and loss induced by the optical pump. We show that two distinct cases of modal interaction can be achieved by adjusting the size of the engineered notch, providing a bridge between intra- and interdisk modal interactions for laser spectral control.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have