Abstract
One-time programmable (OTP) memory is an essential component in chips, which has extremely high security to protect the stored critical information from being altered. However, traditional OTP memory based on the thermal breakdown of the dielectric has a large programming current, which leads to high power consumption. Here, we report a gate tunneling-induced "cold" breakdown phenomenon in carbon nanotube (CNT) field-effect transistors, and based on this we construct a "cold" fuse (C-fuse) memory where applying a mild gate voltage can break down the CNT channel without damaging the gate dielectric. The C-fuse is intrinsically different from dielectric-breakdown OTP, and it exhibits extremely low programming current (10-12 A), a large high-low resistance ratio (>1011), and a long retention time (>10 years). As the first reported OTP memory based on low-dimensional nanomaterials, C-fuse memory exhibits excellent storage performance and good uniformity, demonstrating great potential in constructing next-generation secure storage circuits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have