Abstract

Serratia marcescens can be a plant growth promoting bacteria (PGPB) and an opportunistic human and plant pathogen. We have identified and characterized strains of related species of Serratia and evaluated their biological control of damping-off of tomato seeds caused by Pythium cryptoirregulare. Serratia ureilytica, S. bockelmannii and S. nevei were identified by phylogenetic analysis of partial gyrB gene sequence and average nucleotide identity (ANI). Tomato seeds inoculated with S. ureilytica ILBB 145 showed higher germination percentage and reduced damping-off in greenhouse experiment resembling a commercial operation, and volatiles produced by this strain caused the nearly complete inhibition in vitro of P. cryptoirregulare. Analysis of volatile organic compounds (VOCs) showed that ILBB 145 produced dimethyl disulfide (DMDS), which can partially account for this inhibition. Serratia bockelmannii ILBB 162 performance against damping-off was intermediate and the inhibition of P. cryptoirregulare in vitro was lower and explained by volatile and diffusible metabolites. Both strains augmented DMDS production in the presence of P. cryptoirregulare, suggesting this compound may play a role in the context of interspecific competition. Serratia nevei ILBB 219 showed the lowest inhibition of P. cryptoirregulare in vitro, no DMDS production, and no biocontrol in planta. Draft genomes of the three strains were annotated and individual genes and biosynthesis gene clusters were identified in relation with the observed phenotypes. We report S. ureilytica – a low risk species- with activity as a biological control agent and DMDS produced by this bacterial species putatively involved in seed and seedling protection against P. cryptoirregulare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call