Abstract

The development of non-invasive screening techniques for early cancer detection is one of the greatest scientific challenges of the 21st century. One promising emerging method is the analysis of volatile organic compounds (VOCs). VOCs are low molecular weight substances generated as final products of cellular metabolism and emitted through a variety of biological matrices, such as breath, blood, saliva and urine. Urine stands out for its non-invasive nature, availability in large volumes, and the high concentration of VOCs in the kidneys. This review provides an overview of the available data on urinary VOCs that have been investigated in cancer-focused clinical studies using mass spectrometric (MS) techniques. A literature search was conducted in ScienceDirect, Pubmed and Web of Science, using the keywords “Urinary VOCs”, “VOCs biomarkers” and “Volatile cancer biomarkers” in combination with the term “Mass spectrometry”. Only studies in English published between January 2011 and May 2020 were selected. The three most evaluated types of cancers in the reviewed studies were lung, breast and prostate, and the most frequently identified urinary VOC biomarkers were hexanal, dimethyl disulfide and phenol; with the latter seeming to be closely related to breast cancer. Additionally, the challenges of analyzing urinary VOCs using MS-based techniques and translation to clinical utility are discussed. The outcome of this review may provide valuable information to future studies regarding cancer urinary VOCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.