Abstract

Power cyber–physical systems such as multi-area power systems (MAPSs) have gained considerable attention due to their integration of power electronics with wireless communications technologies. Incorporating a communication setup enhances the sustainability, reliability, and efficiency of these systems. Amidst these exceptional benefits, such systems’ distributed nature invites various cyber-attacks. This work focuses on the equal power sharing of MAPSs in the event of false data injection (FDI) attacks. The proposed work uses a sliding mode control (SMC) mechanism to ensure timely detection of challenges such as FDI attacks and load change, making MAPSs reliable and secure. First, a SMC-based strategy is deployed to enable the detection and isolation of compromised participants in MAPS operations to achieve equal power sharing. Second, time-varying FDI attacks on MAPSs are formulated and demonstrate their impact on equal power sharing. Third, a robust adaptive sliding mode observer is used to accurately assess the state of the MAPS to handle state errors robustly and automatically adjust parameters for identifying FDI attacks and load changes. Lastly, simulation results are presented to explain the useful ability of the suggested method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.