Abstract

BackgroundThe development of pain after peripheral nerve and tissue injury involves not only neuronal pathways but also immune cells and glia. Central sensitization is thought to be a mechanism for such persistent pain, and ATP involves in the process. We examined the contribution of glia to neuronal excitation in the juvenile rat spinal dorsal horn which is subjected to neuropathic and inflammatory pain.ResultsIn rats subjected to neuropathic pain, immunoreactivity for the microglial marker OX42 was markedly increased. In contrast, in rats subjected to inflammatory pain, immunoreactivity for the astrocyte marker glial fibrillary acidic protein was increased slightly. Optically-recorded neuronal excitation induced by single-pulse stimulation to the dorsal root was augmented in rats subjected to neuropathic and inflammatory pain compared to control rats. The bath application of a glial inhibitor minocycline and a p38 mitogen-activated protein kinase inhibitor SB203580 inhibited the neuronal excitation in rats subjected to neuropathic pain. A specific P2X1,2,3,4 antagonist TNP-ATP largely inhibited the neuronal excitation only in rats subjected to neuropathic pain rats. In contrast, an astroglial toxin L-alpha-aminoadipate, a gap junction blocker carbenoxolone and c-Jun N-terminal kinase inhibitor SP600125 inhibited the neuronal excitation only in rats subjected to inflammatory pain. A greater number of cells in spinal cord slices from rats subjected to neuropathic pain showed Ca2+ signaling in response to puff application of ATP. This Ca2+ signaling was inhibited by minocycline and TNP-ATP.ConclusionsThese results directly support the notion that microglia is more involved in neuropathic pain and astrocyte in inflammatory pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.