Abstract

Inflammation affects labor by influencing contractions and dilation. Pain, often linked to tissue ischemia, involves mediators like nitric oxide (NO), TNF-α, and substance P (SP). Neuraxial analgesia, including combined spinal epidural analgesia (SEA) with levobupivacaine, is preferred for its effectiveness and minimal side effects in painless labor. Understanding the impact of painless labor techniques on biomolecular processes such as NO, TNF-α, and substance P levels is crucial for improving pain management strategies. This study investigates these effects in parturients undergoing SEA with levobupivacaine, contributing to the development of novel pain medications and enhancing obstetric care. This experimental study, conducted at a General Hospital in Indonesia, involved 60 expectant mothers in labor or in the third trimester, expected to give birth vaginally at Permata Hati Metro Hospital. Blood serum was used for analysis, and serum NO, TNF-α, and SP levels were assessed using ELISA kit. There's a significant decrease in NO levels before and post-treatment in the SEA group compared to the control group (p < 0.05). However, no significant difference in TNF-α levels was observed between groups before and after treatment (p > 0.05). Additionally, there was no significant difference in SP levels between groups before treatment, but a significant difference was seen after treatment (p < 0.05). SEA significantly reduced labor pain compared to the control group (P < 0.05), with notable improvements in vital signs and APGAR scores, while also shortening labor duration (P < 0.001). In conclusion, SEA with levobupivacaine during painless labor reduces NO levels significantly and shows a trend of decreasing TNF-α and substance P levels, although not statistically significant, with clinical benefits for both patients and babies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.