Abstract

Biogenic volatile organic compound (BVOC) emissions come from a variety of sources, including living above-ground foliar biomass and microbial decomposition of dead organic matter at the soil surface (litter and soil organic matter). There are, however, few reports that quantify the contributions of each component. Measurements of emission fluxes are now made above the vegetation canopy, but these include contributions from all sources. BVOC emission models currently include detailed parameterization of the emissions from foliar biomass but do not have an equally descriptive treatment of emissions from litter or other sources. We present here results of laboratory and field experiments to characterize the major parameters that control emissions from litter.Litter emissions are exponentially dependent on temperature. The moisture content of the litter plays a minor role, except during and immediately following rain events. The percentage of carbon readily available for microbial and other decomposition processes decreases with litter age. These 3 variables are combined in a model to explain over 50% of the variance of individual BVOC emission fluxes measured. The modeled results of litter emissions were compared with above-canopy fluxes. Litter emissions constituted less than 1% of above-canopy emissions for all BVOCs measured. A comparison of terpene oil pools in litter and live needles with above-canopy fluxes suggests that there may be another canopy terpene source in addition to needle storage or that some terpene emissions may be light-dependent.Ground enclosure measurements indicated that compensation point concentrations of BVOCs (equilibrium between BVOC emission and deposition) were usually higher than ambient air concentrations at the temperature of the measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.