Abstract

Biogenic volatile organic compounds (BVOCs), released by practically all plants, have important atmospheric and ecological consequences. Because BVOC-emission measurements are especially tedious, complex and extremely variable between species, two approaches have been used in scientific studies to try to estimate BVOC-emission types and rates from plant species. The first, which has known little success, involves grouping species according to plant-taxonomy criteria (typically, genus and family). The second involves studying the correlation between BVOC content and emission (i.e. how leaf content could be used to estimate emissions). The latter strategy has provided controversial results, partly because BVOCs are amazingly chemically diverse, and, as a result, techniques used to study plant BVOC content, which we review, cannot be equally adequate for all analytes. In order to choose an adequate technique, two patterns must be distinguished. Specifically stored compounds – mainly monoterpenes and sesquiterpenes that dominate the essential oil obtained from a plant – are permanently and massively present in specific storage structures (e.g., secretory cavities, trichomes) of the order of μg/g–mg/g and usually allow emissions to occur during stress periods when terpenes are weakly synthesized. These BVOCs can be studied directly through traditional extraction techniques (e.g., hydrodistillation) and novel techniques (e.g., application of microwaves and ultrasound), and indirectly by trapping techniques involving the collection, within adsorbent material, of BVOCs present in the headspace of a plant. Non-specifically stored compounds (e.g., isoprene, 2-methyl-3-buten-2-ol, and, in species without storage structures, monoterpenes and sesquiterpenes) can only be temporarily accumulated in leaf aqueous and lipid phases in small concentrations of the order of ng/g. As a result, studying their concentration in leaves requires the use of trapping techniques, more sensitive to trace amounts. Unlike for specifically stored BVOCs, knowledge of the concentration of non-specifically stored BVOCs cannot provide any information regarding the emission potential of a species but, instead, provides crucial information to understand why BVOC emissions may be uncoupled from the physiological processes that drive their synthesis. We describe both extracting and trapping techniques and discuss them in terms of the technical choices that may cause losses of thermolabile constituents, chemical transformations, different volatile recoveries and suitability to represent plant content of BVOCs faithfully. The second part of this review addresses technical shortcomings and biological and environmental factors that may alter the correlations between BVOC content and emission from plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call