Abstract
Ecological function of charcoal has been mainly investigated by adding charcoal to soil, which is not fully adequate to understand in situ the role in fire-prone forest ecosystem. To determine in situ effects of charcoal on ecosystem functions, such as nutrient availability, we conducted an experimental burning in a Japanese white birch forest with dense coverage of dwarf bamboo in the understory with or without removal of charcoal. Ammonium-N in the remaining humus layer increased immediately after the burning, but decreased to the level of unburnt plots within 1 month of the burning. Removal of charcoal had no significant effect on the NH4+-N dynamics. Although burning did not affect NO3−-N dynamics during the sampling period, charcoal removal led to a slight increase in NO3−-N. The available P increased immediately after the burning, but then fell at 1 month after burning. Charcoal inhibited the available P depletion and prolonged the high availability of P. Greater availability of P might be due to the adsorption of phosphate in charcoal pores. Exchangeable Ca and Mg increased gradually; charcoal appeared to extend the period of higher concentration of exchangeable Ca and Mg. Charcoal deriving from fire is a key factor in influencing available nutrient in the humus layer of post-fire forests.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have