Abstract
Abstract Elevated atmospheric [CO2] (eCO2) is currently altering nutrient cycling and availability in ecosystems worldwide. If the availabilities and turnover rates of macro‐ and micronutrients are differentially affected, then nutrient cycles may become out of sync (i.e., decoupled). We evaluated the impacts of 3 years of eCO2 (550 µmol CO2/mol) on the availability, stability and coupling of eleven essential macro and micronutrients in a mature, P‐limited Eucalyptus woodland from Eastern Australia (EucFACE). Despite increases in N and P availability in the first 18 months of study, nutrient availabilities and their stoichiometric ratios were unaffected by eCO2 across the study period (26–57 months of experimental duration). In contrast, the stability of nutrient availability increased under eCO2, which was concomitant with a reduction in the degree of biogeochemical coupling. Synthesis. We demonstrate that macro‐ and micro‐nutrient cycles can quickly become out of sync (i.e., decoupled) under eCO2 in a low‐nutrient Australian eucalypt woodland, despite the lack of consistent effects on nutrient availability; such decoupling of nutrient cycles may have unpredicted consequences in terms of ecosystem functioning under the widely assumed positive relationship between biogeochemical coupling and ecosystem functioning.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have