Abstract

Over the past decade, China has experienced a decline in atmospheric reactive nitrogen (Nr) emissions. Given that China's subtropical region is a significant nitrogen (N) deposition hotspot, it is essential to accurately quantify the ten-year variations in dry and wet N depositions in the context of reductions in atmospheric Nr emissions. Here, we evaluated the spatiotemporal variation in N deposition on forest, paddy field and tea field ecosystems in a typical subtropical agricultural catchment from 2011 to 2020. Our findings indicated a significant decrease in total N deposition in both the tea field ecosystem (41.5–30.5 kg N ha−1) and the forest ecosystem (40.8–25.7 kg N ha−1) (P < 0.05), but no significant change in the paddy field ecosystem (29.3–32.9 kg N ha−1). Specifically, dry N deposition exhibited significant declines except in the paddy field ecosystem, whereas wet N deposition had no significant change. The reduction in total oxidized and reduced N depositions in forest and tea field ecosystems is attributed to the decrease in NOx and NH3 emissions. Additionally, The ratio of NHx deposition to total N deposition all exceeded 0.5 in three ecosystems and the NHx/NOy ratio had an increasing trend (P < 0.05) in the paddy field, indicating that reactive N emissions from agricultural sources were the primary contributor to overall N deposition. Our study emphasizes that despite the decreasing trend in N deposition, it still exceeds the critical loads of natural ecosystems and requires stringent N emissions control, particularly from agricultural sources, in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call