Abstract

We describe a complete method for a precise study of gravitational interaction between two nearby quantum masses. Since the displacements of these masses are much smaller than the initial separation between their centers, the displacement-to-separation ratio is a natural parameter in which the gravitational potential can be expanded. We show that entanglement in such experiments is sensitive to initial relative momentum only when the system evolves into non-Gaussian states, i.e., when the potential is expanded at least up to the cubic term. A pivotal role of force gradient as the dominant contributor to position-momentum correlations is demonstrated. We establish a closed-form expression for the entanglement gain, which shows that the contribution from the cubic term is proportional to momentum and from the quartic term is proportional to momentum squared. From a quantum information perspective, the results find applications as a momentum witness of non-Gaussian entanglement. Our methods are versatile and apply to any number of central interactions expanded to any order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.