Abstract
We use matched quantum entanglement witnesses to study the separable criteria of continuous variable states. The witness can be written as an identity operator minus a Gaussian operator. The optimization of the witness then is transformed to an eigenvalue problem of a Gaussian kernel integral equation. It follows a separable criterion not only for symmetric Gaussian quantum states, but also for non-Gaussian states prepared by photon adding to or/and subtracting from symmetric Gaussian states. Based on Fock space numeric calculation, we obtain an entanglement witness for more general two-mode states. A necessary criterion of separability follows for two-mode states and it is shown to be necessary and sufficient for a two mode squeezed thermal state and the related two-mode non-Gaussian states. We also connect the witness based criterion with Werner-Wolf criterion and refine the Werner-Wolf criterion.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have