Abstract

Crowdsourcing is an emerging tool for collaboration and innovation platforms. Recently, crowdsourcing platforms have become a vital tool for firms to generate new ideas, especially large firms such as Dell, Microsoft, and Starbucks, Crowdsourcing provides firms with multiple advantages, notably, rapid solutions, cost savings, and a variety of novel ideas that represent the diversity inherent within a crowd. The literature on crowdsourcing is limited to empirical evidence of the advantage of crowdsourcing for businesses as an innovation strategy. In this study, Starbucks’ crowdsourcing platform, Ideas Starbucks, is examined, with three objectives: first, to determine crowdsourcing participants’ perception of the company by crowdsourcing participants when generating ideas on the platform. The second objective is to map users into a community structure to identify those more likely to produce ideas; the most promising users are grouped into the communities more likely to generate the best ideas. The third is to study the relationship between the users’ ideas’ sentiment scores and the frequency of discussions among crowdsourcing users. The results indicate that sentiment and emotion scores can be used to visualize the social interaction narrative over time. They also suggest that the fast greedy algorithm is the one best suited for community structure with a modularity on agreeable ideas of 0.53 and 8 significant communities using sentiment scores as edge weights. For disagreeable ideas, the modularity is 0.47 with 8 significant communities without edge weights. There is also a statistically significant quadratic relationship between the sentiments scores and the number of conversations between users.

Highlights

  • To succeed with products requires an understanding of customers’ needs [1,2,3]

  • 1, 2010, a customer posted an idea in the “innovation community” category on the Starbucks crowdsourcing platform, Ideas Starbucks, about payment with a Starbucks mobile card

  • The main objective of this study is to examine and explicate how companies can benefit from crowdsourcing platforms by using a multitude of empirical methods, such as text mining, sentiment analysis, social network analysis, and generalized linear mixed models, to generate new product ideas

Read more

Summary

Introduction

To succeed with products requires an understanding of customers’ needs [1,2,3]. It is essential to understand how and why knowledge of customer needs can maximize a firm’s profit. This knowledge would allow firms to effectively manage and optimize the outcomes of customer involvement in a crowdsourcing platform. 1, 2010, a customer posted an idea in the “innovation community” category on the Starbucks crowdsourcing platform, Ideas Starbucks, about payment with a Starbucks mobile card. In 2011, Starbucks implemented this idea and started to provide mobile payment options. Alzahrani et al Comput Soc Netw (2021) 8:21

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.