Abstract

In this study, we investigated a fractured karst aquifer polluted by chlorinated hydrocarbons to determine the contamination characteristics of the main hydrocarbon components. The natural attenuation processes of representative components were simulated and forecasted using TMVOC and hydro-chemical components (NO3−, SO42−, HCO3− Cl− and δ13CDIC). The impact of hydrocarbon compounds on the hydro-chemical ions were estimated, and their historical contamination characteristics were also reconstructed. Results showed that the dynamic characteristics of Trichloromethane and 1,1,2-Trichlorethane can indicate those of chlorinated hydrocarbons, where the rate of natural attenuation was observed to decrease with decreasing concentrations of hydrocarbon compounds. Additionally, the long-term variation characteristics in groundwater levels showed that the relatively stable hydrodynamic field conditions enabled the simulation of the natural attenuation processes of chlorinated hydrocarbons. The simulation which also considered the biodegradation processes showed that the use of TMVOC and hydro-chemical parameters may better describe natural attenuation processes. Over 3 years (from 2017 to 2019), the average percentage of biodegradation in the total natural attenuation was estimated to be 88.35%. Similarly, Trichloromethane and 1,1,2-Trichlorethane are forecasted to have no health hazards in 10 and 15 years, respectively. The contribution rates of biodegradation to HCO3− and Cl− in the fractured karst aquifer varied with the concentrations of chlorinated hydrocarbons. Overall, the findings and methods in this work have significant contributions for advancing remediation developments of petroleum hydrocarbons, especially in karst environments that are highly susceptible to contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call