Abstract

The oriented strandboard (OSB) has less dimensional stability than plywood, but they are competitive panels and have been used for similar ends. The wood-water relation variables, such as thickness swelling and water absorption, express this OSB dimensional instability and can be explained by two main factors: wood hygroscopicity and imposed hot-pressing stresses. The objective of this present paper was to propose a thermal post-treatment as a method to improve OSB dimensional stability by decreasing wood hygroscopicity and releasing hot-pressing stress. OSB panels from Pinus taedawood were produced in laboratory, and their characteristics were: single layer, 0.8 g/cm3; 8% phenolic resin and without wax. The OSB panels were treated in a laboratory press at 250 °C for about 4, 7 and 10 minutes. The wood-water relation variables, thickness swelling (TS), water absorption (WA), equilibrium moisture content (EMC) and springback or permanent thickness swelling (PTS) were determined and compared with untreated panels. The results showed that the proposed thermal treatment was effective to reduce TS, EMC and PTS, but didn’t affect WA which was affected by panel density reduction. The longer the treatment the higher the dimensional stability, and panel weight loss could be used as predictive variable for the efficiency of the treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.