Abstract

The aim of this study was to evaluate the effect of hydrothermal treatment in strand particles of pine used for oriented strand boards (OSB) production. Strand particles of pine were hydrothermally treated at 130, 150 and 170 °C for 7 and 21 min, for the determination of chemical composition, pH, equilibrium moisture content, particles mass loss, and contact angle of these particles with phenol–formaldehyde resin. Afterwards, OSB panels were produced using 8% phenol–formaldehyde resin, with a nominal density of 0.7 g/cm3, and pressing cycle at 170 °C and 3.14 MPa for 8 min. Then, the panels were kept in climate chamber until mass stabilization for the determination of their physical and mechanical properties, and for comparison with the European standards. The hydrothermal treatment in the particles decreased carbohydrate, especially mannan, xylan and arabinans, resulting in reduced equilibrium moisture content, pH, and contact angle, and increasing buffer capacity and mass loss. In OSB panels, treated particles caused the drop in the equilibrium moisture content and reduction of the thickness swelling of the panel, without reducing the mechanical strength, making the hydrothermal treatment very attractive. The hydrothermal treatment at 170 °C for 7 min allowed the resulting OSB panel being classified into the categories 1 and 2 of the European standard, expanding its range of use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call