Abstract

Energy and environmental challenges stand as pivotal issues in contemporary society. This study presents a novel solid-liquid-solid contact-electro-catalytic (CEC) approach based on n-type and p-type silicon wafers for the degradation of organic dyes such as methylene blue, rhodamine B, eriochrome black T and crystal violet. Notably, under indoor light conditions, the degradation efficiency of 5 ppm methylene blue can achieve an exceptional 96.25 % within a brief 18-min-friction treatment. Our investigation elucidates that the catalytic mechanism arises from the synergistic interplay between electron transitions induced by the tribovoltaic effect and electron transfer facilitated by CEC. Furthermore, the solid-liquid-solid CEC exhibits remarkable attributes such as complete recyclability and reusability, thereby opening new avenues for advancements in solid-liquid-solid CEC research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.