Abstract
The Variational Principle (VP) is designed to generate non-folding grids (diffeomorphisms) with prescribed Jacobian determinant (JD) and curl. The solution pool of the original VP is based on an additive formulation and, consequently, is not invariant in the diffeomorphic Lie algebra. The original VP works well when the prescribed pair of JD and curl is calculated from a diffeomorphism, but not necessarily when the prescribed JD and curl are unknown to come from a diffeomorphism. In spite of that, the original VP works effectively in 2D grid generations. To resolve this issue, in this paper, we describe a new version of VP (revised VP), which is based on the composition of transformations and, therefore, is invariant in the Lie algebra. The revised VP seems to have overcome the inaccuracy of the original VP in 3D grid generations. In the following sections, the mathematical derivations are presented. It is shown that the revised VP can calculate the inverse transformation of a known diffeomorphism. Its inverse consistency and transitivity of transformations are also demonstrated numerically. Finally, a new definition of averaging diffeomorphisms based on the revised VP is proposed.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have