Abstract

Adsorption of molecules from a solution onto a fluorine-terminated Si(111) surface has been examined using X-ray photoelectron spectroscopy. The decrease in the F1s peak intensity assigned to the surface Si–F bond is accompanied by a quantitative increase in the core electron peaks ascribed to the molecule, while some Si–F remain intact. The adsorption of molecules with larger dimensions results in a decrease in the proportion of surface fluorine that is replaced. These results show that the substitution reaction proceeds until the steric hindrance of adsorbed molecules limits further adsorption. Fourier transform infrared attenuated total reflection reveals the molecule to be covalently bonded to the silicon surface giving monomolecular coverage. Dicarboxylic acids are shown to adsorb through only one of the two carboxyl groups, the other end being exposed at the monolayer–air or monolayer–liquid interface. Free carboxyl groups on the adlayer, after being converted to chloroformyl groups by chlorination reagents, act as chemisorption sites for other molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.