Abstract

This paper describes a method for constructing a minimal deterministic finite automaton (DFA) from a regular expression. It is based on a set of graph grammar rules for combining many graphs (DFA) to obtain another desired graph (DFA). The graph grammar rules are presented in the form of a parsing algorithm that converts a regular expression R into a minimal deterministic finite automaton M such that the language accepted by DFA M is same as the language described by regular expression R. The proposed algorithm removes the dependency over the necessity of lengthy chain of conversion, that is, regular expression → NFA with e-transitions → NFA without etransitions → DFA → minimal DFA. Therefore the main advantage of our minimal DFA construction algorithm is its minimal intermediate memory requirements and hence, the reduced time complexity. The proposed algorithm converts a regular expression of size n in to its minimal equivalent DFA in O(n.log2n) time. In addition to the above, the time complexity is further shortened to O(n.logen) for n ≥ 75. General Terms Algorithms, Complexity of Algorithm, Regular Expression, Deterministic Finite Automata (DFA), Minimal DFA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.