Abstract
AbstractIn this work, we attempt to extract Deterministic Finite Automata (DFA) for a set of regular grammars from sequential Recurrent Neural Networks (RNNs). We have considered Long Short-Term Memory (LSTM) architecture, which is a variant of RNN. We have classified a set of regular grammars by considering their imbalances in terms of strings they accept and the strings they reject by using an LSTM architecture. We have formulated a set of the extended Tomita Grammar by adding a few more regular grammars. The different imbalance classes we introduce are Nearly Balanced (NB), Mildly Imbalanced (MI), Highly Imbalanced (HI), Extremely Imbalanced (EI). We have used L* algorithm for DFA extraction from LSTM networks. As a result, we have shown the performance of training an LSTM architecture for extraction of DFA in the context of the imbalances for a set of so formed regular grammars. We were able to extract correct minimal DFA for various imbalanced classes of regular grammar, though in some cases, we could not extract minimal DFA from the Network.KeywordsDeterministic Finite Automata (DFA)ImbalanceLong Short-Term Memory (LSTM) NetworkSequential Neural NetworkExtended Tomita Grammar Set (ETGS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.