Abstract

Using a numerical renormalization group based on exploiting an underlying exactly solvable nonrelativistic theory, we study the out-of-equilibrium dynamics of a 1D Bose gas (as described by the Lieb-Liniger model) released from a parabolic trap. Our method allows us to track the postquench dynamics of the gas all the way to infinite time. We also exhibit a general construction, applicable to all integrable models, of the thermodynamic ensemble that has been suggested to govern this dynamics, the generalized Gibbs ensemble. We compare the predictions of equilibration from this ensemble against the long time dynamics observed using our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call