Abstract
The Wilkes Subglacial Basin hosts potentially the largest unstable sector of the East Antarctica Ice Sheet due to the depth of the ice bed below sea level. Ice covering such basins poses a potentially high, but poorly constrained risk for future sea-level rise, as it is more vulnerable to melting by warming of the surrounding ocean. Such melting could potentially trigger mechanisms of unstable retreat. The neighbouring Transantarctic Mountains are the largest non-contractional mountain range on Earth. Traditionally, the Transantarctic Mountains are viewed as dividing the ancient East Antarctic craton from the younger West Antarctic Rift system. However, petrological samples and previous geophysical mapping suggest that the craton boundary is further west, following the western edge of the Wilkes Subglacial Basin. Subglacial geology influences geothermal heat flow and bed roughness, and therefore to better understand the past, present and possible future behaviour of the East Antarctic Ice Sheet improved understanding of the subglacial geology on which it flows, especially in the Wilkes Subglacial Basin and Transantarctic Mountains region, is important.We present a new 3D crustal model of the Wilkes Subglacial Basin and the Transantarctic Mountains based on joint inversion of airborne gravity and magnetic data using the mutual information inversion algorithm incorporated in the software JIF3D. Our model shows a large intrusive body located in the interior of the Wilkes Subglacial Basin and suggests a tectonically complex area west of the Basin, which could potentially indicate the transition zone at the margin of the Terre Adélie Craton. Geological units are inferred by clustering of inverted susceptibility and density distribution and are validated against sparse petrological samples from the Transantarctic Mountains region and along the George V Land and Terre Adélie coasts. Our inferred crustal properties model can provide crucial insight into the heterogeneity of subglacial geology in terms of thermal conductivity and crustal heat production, which could influence the geothermal heat flow in this area and therefore make the overlying ice sheet more vulnerable than commonly thought. 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.