Abstract
Previously it was shown that the HHV-8-encoded chemokine receptor ORF74 shows considerable agonist-independent, constitutive activity giving rise to oncogenic transformation (Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C., and Cesarman, E. (1997) Nature 385, 347-350). In this study we report that a second viral-encoded chemokine receptor, the human cytomegalovirus-encoded US28, also efficiently signals in an agonist-independent manner. Transient expression of US28 in COS-7 cells leads to the constitutive activation of phospholipase C and NF-kappaB signaling via G(q/11) protein-dependent pathways. Whereas phospholipase C activation is mediated via Galpha(q/11) subunits, the activation of NF-kappaB strongly depends on betagamma subunits with a preference for the beta(2)gamma(1) dimer. The CC chemokines RANTES (regulated on activation, normal T cell expressed and secreted) and MCP-1 (monocyte chemotactic protein-1) act as neutral antagonists at US28, whereas the CX(3)C chemokine fractalkine acts as a partial inverse agonist with IC(50) values of 1-5 nm. Our data suggest that a high level of constitutive activity might be a more general characteristic of viral G protein-coupled receptors and that human cytomegalovirus might exploit this G protein-coupled receptor property to modulate the homeostasis of infected cells via the early gene product US28.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have