Abstract
In a recent paper, [Y. Aharonov, S. Popescu, D. Rohrlich, Proc. Natl. Acad. Sci. U.S.A.118 e1921529118 (2021)], it was argued that while the standard definition of conservation laws in quantum mechanics, which is of a statistical character, is perfectly valid, it misses essential features of nature and it can and must be revisited to address the issue of conservation/nonconservation in individual cases. Specifically, in the above paper, an experiment was presented in which it can be proven that in some individual cases, energy is not conserved, despite being conserved statistically. It was felt however that this is worrisome and that something must be wrong if there are individual instances in which conservation does not hold, even though this is not required by the standard conservation law. Here, we revisit that experiment and show that although its results are correct, there is a way to circumvent them and ensure individual case conservation in that situation. The solution is however quite unusual, challenging one of the basic assumptions of quantum mechanics, namely that any quantum state can be prepared, and it involves a time-holistic, double nonconservation effect. Our results bring light on the role of the preparation stage of the initial state of a particle and on the interplay of conservation laws and frames of reference. We also conjecture that when such a full analysis of any conservation experiment is performed, conservation is obeyed in every individual case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.