Abstract

We study how the structure of the interaction graph of a game affects the existence of pure Nash equilibria. In particular, for a fixed interaction graph, we are interested in whether there are pure Nash equilibria arising when random utility tables are assigned to the players. We provide conditions for the structure of the graph under which equilibria are likely to exist and complementary conditions which make the existence of equilibria highly unlikely. Our results have immediate implications for many deterministic graphs and generalize known results for random games on the complete graph. In particular, our results imply that the probability that bounded degree graphs have pure Nash equilibria is exponentially small in the size of the graph and yield a simple algorithm that finds small nonexistence certificates for a large family of graphs. Then we show that in any strongly connected graph of n vertices with expansion $(1+\Omega(1))\log_2(n)$ the distribution of the number of equilibria approaches the Poisson distribution with parameter 1, asymptotically as $n \to +\infty$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.