Abstract
This paper studies the existence of pure Nash equilibria in resource graph games, a general class of strategic games succinctly representing the players’ private costs. These games are defined relative to a finite set of resources and the strategy set of each player corresponds to a set of subsets of resources. The cost of a resource is an arbitrary function of the load vector of a certain subset of resources. As our main result, we give complete characterizations of the cost functions guaranteeing the existence of pure Nash equilibria for weighted and unweighted players, respectively.
 For unweighted players, pure Nash equilibria are guaranteed to exist for any choice of the players’ strategy space if and only if the cost of each resource is an arbitrary function of the load of the resource itself and linear in the load of all other resources where the linear coefficients of mutual influence of different resources are symmetric. This implies in particular that for any other cost structure there is a resource graph game that does not have a pure Nash equilibrium.
 For weighted games where players have intrinsic weights and the cost of each resource depends on the aggregated weight of its users, pure Nash equilibria are guaranteed to exist if and only if the cost of a resource is linear in all resource loads, and the linear factors of mutual influence are symmetric, or there is no interaction among resources and the cost is an exponential function of the local resource load.
 We further discuss the computational complexity of pure Nash equilibria in resource graph games showing that for unweighted games where pure Nash equilibria are guaranteed to exist, it is coNP-complete to decide for a given strategy profile whether it is a pure Nash equilibrium. For general resource graph games, we prove that the decision whether a pure Nash equilibrium exists is Σ p 2 -complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.