Abstract
The class of weakly acyclic games, which includes potential games and dominance-solvable games, captures many practical application domains. In a weakly acyclic game, from any starting state, there is a sequence of better-response moves that leads to a pure Nash equilibrium; informally, these are games in which natural distributed dynamics, such as better-response dynamics, cannot enter inescapable oscillations. We establish a novel link between such games and the existence of pure Nash equilibria in subgames. Specifically, we show that the existence of a unique pure Nash equilibrium in every subgame implies the weak acyclicity of a game. In contrast, the possible existence of multiple pure Nash equilibria in every subgame is insufficient for weak acyclicity in general; here, we also systematically identify the special cases (in terms of the number of players and strategies) for which this is sufficient to guarantee weak acyclicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.