Abstract

Conformational changes in individual carboxymethylcellulose (CMC) chains deposited on a highly oriented pyrolytic graphite (HOPG) surface were investigated by atomic force microscopy (AFM). A small amount of CMC solution with various salt concentrations was deposited onto the HOPG surface. The CMC molecular chains adsorbed onto the HOPG surface were clearly visualized using tapping-mode AFM under ambient conditions, as compared with those on a hydrophilic mica surface. Each CMC chain was distinguishable at the molecular level based on the vertical profiles of the AFM images, and probably aligned along the HOPG crystal lattice. Higher NaCl concentrations brought about dramatic conformational changes from aligned single chains to globular aggregates via the molecular network structure only on the HOPG surface through electrostatic screening of the CM groups. Although CMC is a water-soluble hydrophilic polyelectrolyte, some interaction, possibly due to a CH-π bonding between the glucopyranosic axial plane of CMC and the aromatic rings of HOPG, is considered to be effective and dominant for the unique molecular attachment. These phenomena would imply the potential use of HOPG as a substrate for not only molecular imaging, but also for nano-scale morphological control of cellulosic polymers and other structural polysaccharides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.