Abstract

The hinge region links the antigen binding Fab part to the constant Fc domain in immunoglobulins. For the hinge peptide derivative [AcThr(OtBu)-Cys-Pro-Pro-Cys-Pro-Ala-ProNH2]2 the assignment of the 1H and 13C resonances was achieved by two-dimensional nmr techniques: total correlation spectroscopy (TOCSY), nuclear Overhauser enhancement spectroscopy (NOESY), rotating frame nuclear Overhauser enhancement spectroscopy (ROESY), heteronuclear multiple quantum coherence (HMQC) transfer, and a HSQC (modified Overbodenhausen experiment) with high resolution in F1, which was several times folded in F1 but still phase correctable. Conformational relevant parameters (78 nuclear Overhauser effect distance restraints, 3JHH for prochiral assignments, temperature gradients) were determined by nmr and served as input data for molecular dynamics (MD) structure refinement. A simulated model compound corresponding to the [Cys-Pro-Pro-Cys]2 core elongated by the peptide chains in the Fab and Fc direction served as a starting structure for the final MD run. The conformation calculated in in vacuo does not agree with the C2 symmetry required from nmr data, but the structure obtained by a water simulation fulfills the requirement. Here the core of the hinge peptide derivative adopts a polyproline II double helix as in the x-ray structure of IgG1. Hence, segments responsible for the internal flexibility are located outside the core as confirmed by the flexibility of the solvent exposed C termini.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.