Abstract

The strategy and tactics of conformational analysis of cyclic peptides in solution is demonstrated by the example of cyclo(-D-Pro-Phe-Thr-Phe-Trp-Phe-). Spin-locked experiments like rotating frame nuclear Overhauser enhancement spectroscopy (ROESY), ROTO, and TOCSY are successfully applied to assign all proton signals and to obtain distance information. A crude conformational model was built using the nmr data. This starting model was refined by restrained molecular dynamics (MD) calculations using ROE derived distances and fixed bond angles as determined from homo- and heteronuclear coupling constants. To mimic the solvent and to reduce artifacts in an in vacuo calculation the charges of the solvent-exposed NH protons were gradually reduced according to the temperature gradients. The thus obtained "conformation" (mean of a 40 ps MD trajectory) shows very close similarity to x-ray structures in an orthorhombic and in two monoclinic crystal modifications of the same compound. The main difference is the breaking of an intermolecular hydrogen bond of the threonine hydroxyl group on dissolution of the crystal and forming an intramolecular hydrogen bond in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.