Abstract
Abstract We show with a new variational approach that any Riemannian metric on a multiply connected schlicht domain in ℝ2 can be represented by globally conformal parameters. This yields a “Riemannian version” of Koebe's mapping theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACV
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.