Abstract
The stationary–Randers correspondence (SRC) provides a deep connection between the property of standard stationary spacetimes being globally hyperbolic, and the completeness of certain Finsler metrics of Randers type defined on the fibres. In order to establish further results, we investigate pointwise conformal transformations of certain Riemannian metrics on the fibres and growth conditions on the corresponding conformal factors. In general, a conformal transformation may map a complete Riemannian metric onto a complete or incomplete metric. We prove a theorem for the growth of the conformal factor such that the conformally transformed Riemannian metric is also complete. As an application, we establish novel relations between the completeness of Riemannian metrics, growth conditions on conformal factors and the Cauchy hypersurface condition on the fibres of a standard stationary spacetime. These results also imply new conditions for the completeness of Randers-type metrics by the application of the SRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.