Abstract

As the reliability of electrical microcontacts has proved to be the main limitation to a fast-growing production of ultraminiaturized switches, a thorough understanding of their failure mechanisms is an all-important purpose. This paper aims at showing that conducting-probe Atomic Force Microscopy (cp-AFM) is an adequate tool to actuate and study electrical contacts. By choosing relevant cantilevers and operating mode of the cp-AFM, dimensions, gap and force level representative of existing microelectromechanical switches (MEMS switches) are obtained. With two examples, the advantages of using a cp-AFM in force mode for studying physical phenomena at very low scale are highlighted. The reported investigations concern material transfer between contact parts and contact bounces. Those two undesirable phenomena induce surface damages and impinge reliability of MEMS switches. In both cases an explanatory scenario of phenomena occurring at nanoscale is proposed and preventive recommendations for improving the lifetime of such devices are suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call