Abstract

Advancement in the development of metallic-based implantable micro-scale bioelectronics has been limited by low signal to noise ratios and low charge injection at electrode-tissue interfaces. Further, implantable electrodes lose their long-term functionality because of unfavorable reactive tissue responses. Thus, substantial incentive exists to produce bioelectronics capable of delivering therapeutic compounds while improving electrical performance. Here, we have produced hollow poly(pyrrole) microcontainers (MCs) using poly(lactic-co-glycolic) acid (PLGA) as degradable templates. We demonstrate that the effective surface area of the electrode increases significantly as deposition charge density is increased, resulting in a 91% decrease in impedance and an 85% increase in charge storage capacity versus uncoated gold electrodes. We also developed an equivalent circuit model to quantify the effect of conducting polymer film growth on impedance. These MC-modified electrodes offer the potential to improve the electrical properties of implantable bioelectronics, as well as provide potential controlled release avenues for drug delivery applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call