Abstract
Let V be a finite dimensional vector space of dimension at least 2 over an infinite field F. We show that the set of all decomposable elements in the rth symmetric product space over i:V(r≥ 2) is an algebraic set if F is algebraically closed and only if every polynomial of degree at most r splits completcly over F.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.